The question of how isolated many-body systems come to thermal equilibrium has been debated since before the advent of quantum mechanics, which seems only to confuse the issue further. I will present a simple picture, developed over the last two decades, of how thermalization of isolated quantum many-body systems can occur, with the universal properties of chaotic quantum dynamics as the underlying mechanism. An array of analytic, numerical, and experimental evidence now supports the validity of this picture for a large class of systems.